

The Precise Integration Time Domain (PITD) Method

- A Supplement to the Computational Electromagnetics

Xikui Ma¹ and Tianyu Dong^{1,2}

maxikui@mail.xjtu.edu.cn tydong@mail.xjtu.edu.cn

September 19, 2016 ¹ SKLEI, School of Electrical Engineering, XJTU ² MSSV, School of Aerospace, XJTU

Small antenna

4 Outlooks

FDTD major technical paths

- Absorbing boundary conditions
 - Mur; Engquist-Majda; Berenger PML, UPML, CPML
- Numerical dispersion
 - High-order space differences; MRTD; PSTD
- Vumerical stability
 - ADI techniques; PITD; One-step Chebyshev method
- Conforming grids
 - Locally/globally conforming; Stable hybrid FETD/FDTD
- Digital signal processing
 - Near-to-far-field transformation
- Dispersive and nonlinear materials
 - Isotropic/anisotropic dispersions; Nonlinear dispersions
- Multiphysics

ICEF2016 Xi'an — PITD

Maxwell's equations

and then there was light.

And God said:

$$\begin{aligned} \frac{\partial \mathbf{E}}{\partial t} &= \varepsilon^{-1} \cdot \nabla \times \mathbf{H}, \\ \frac{\partial \mathbf{H}}{\partial t} &= -\mu^{-1} \cdot \nabla \times \mathbf{E}, \end{aligned}$$

J. C. Maxwell

"From a long view of the history of mankind the most significant event of the nineteenth century will be judged as Maxwell's discovery of the laws of electrodynamics." — Richard P. Feynman

Discretization and Yee cells

FDTD

- Finite difference in space
- Finite difference in time

PITD

- Finite difference in space
- ODEs in time

Updating equations / ODEs

FDTD

$$(\mathbf{R} + \mathbf{F})\mathbf{X}^{n+1} = (\mathbf{R} - \mathbf{F})\mathbf{X}^n + \mathbf{f}^{n+1}$$
$$\mathbf{R} = \frac{1}{2} \begin{bmatrix} \frac{2}{\Delta t} \mathbf{D}_e & -\mathbf{K} \\ -\mathbf{K}^T & \frac{2}{\Delta t} \mathbf{D}_\mu \end{bmatrix} \mathbf{F} = \frac{1}{2} \begin{bmatrix} \mathbf{D}_{\sigma_e} & \mathbf{K} \\ -\mathbf{K}^T & \mathbf{D}_{\sigma_m} \end{bmatrix}$$

where

$$\mathbf{X}^n = \begin{bmatrix} \mathbf{E}^n \\ \mathbf{H}^{n+1/2} \end{bmatrix}$$

- $\mathbf{D}_{\epsilon|\mu|\sigma_e|\sigma_m}$ diagonal matrices containing $\epsilon, \mu, \sigma_e, \sigma_m$ for each cell
- K arises from the discretization of the curl operators
- **f**ⁿ⁺¹ sources

${\bf E}$ and ${\bf H}$ are ${\bf staggered}$ in time.

PITD

$$\frac{\mathrm{d}\mathbf{X}(t)}{\mathrm{d}t} = \mathbf{M}\mathbf{X}(t) + \mathbf{f}(t)$$

where

$$\mathbf{X}(t) = \begin{bmatrix} \mathbf{E}(t) \\ \mathbf{H}(t) \end{bmatrix}$$

 M — matrix containing material properties and the discretization of the curl operators

f — sources

E and H are non-staggered in time.

• Analytical form

$$\mathbf{X}(t) = \exp(\mathbf{M}t)X(0) + \int_0^t \exp[\mathbf{M}(t-s)]\mathbf{f}(s)ds$$

Recursive form

$$\mathbf{X}_{n+1} = \mathbf{T}\mathbf{X}_n + \mathbf{T}^{n+1} \int_{t_n}^{t_{n+1}} \exp(-s\mathbf{M})\mathbf{f}(s) ds$$

$$2$$

$$\mathbf{T} = e^{\mathbf{M}\Delta t} \quad \textbf{Key points!}$$

Examples

Ways to compute $e^{\mathbf{M} \Delta t}$

SIAM REVIEW Vol. 20, No. 4, October 1978 © Society for Industrial and Applied Mathematics 0036-1445/78/2004-0031\$01.00/0

NINETEEN DUBIOUS WAYS TO COMPUTE THE EXPONENTIAL OF A MATRIX*

CLEVE MOLER† AND CHARLES VAN LOAN

SIAM REVIEW Vol. 45, No. 1, pp. 3-49 © 2003 Society for Industrial and Applied Mathematics

Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later*

> Cleve Moler[†] Charles Van Loan[‡]

- Series methods
- ODE methods
- Polynomial methods
- Matrix decomposition methods
- Splitting methods
- Krylov space methods

• ..

2 series expansion of $e^{\mathbf{M}\tau}$

$$e^{M\tau} = \mathbf{I} + \mathbf{T}_a \approx \mathbf{I} + (M\tau) + \frac{(M\tau)^2}{2!} + \frac{(M\tau)^3}{3!} + \frac{(M\tau)^4}{4!}$$

3 compute
$$\mathbf{T} = (e^{\mathbf{M}\tau})^{\ell} = (\mathbf{I} + \mathbf{T}_a)^{\ell}$$
 — to be contd.

computational precision.

• recursive form for **X**_{n+1}:

$$\mathbf{X}_{n+1} = \mathbf{T} \left[\mathbf{X}_n + \mathbf{M}^{-1} (\mathbf{f}_0 + \mathbf{M}^{-1} \mathbf{f}_1) \right] \\ - \mathbf{M}^{-1} \left[\mathbf{f}_0 + \mathbf{M}^{-1} \mathbf{f}_1 + \mathbf{f}_1 \Delta t \right]$$

compute M^{-1} ? It is *noninvertible* generally!

- three-point Gaussian quadrature
- recursive form for X_{n+1} :

$$\begin{split} \mathbf{X}_{n+1} &= \mathbf{T}\mathbf{X}_{n} + \frac{5}{18}e^{\left(1+\sqrt{3/5}\right)\mathbf{M}\Delta t/2}\mathbf{f}\left[t_{n} + \left(1-\sqrt{3/5}\right)\Delta t/2\right] \\ &+ \frac{5}{18}e^{\left(1-\sqrt{3/5}\right)\mathbf{M}\Delta t/2}\mathbf{f}\left[t_{n} + \left(1+\sqrt{3/5}\right)\Delta t/2\right] \\ &+ \frac{8}{18}e^{\mathbf{M}\Delta t/2}\mathbf{f}\left(t_{n} + \Delta t/2\right) \end{split}$$

$$\frac{\mathrm{d}\mathbf{X}}{\mathrm{d}t} = \mathbf{M}\mathbf{X} + \mathbf{f}, \quad \mathbf{X} = [\mathbf{E}, \mathbf{H}]^T$$

- 1 finite difference in space, but differential in time
- **2** scaling and squaring for $\exp(\mathbf{M}\Delta t)$
- **3** $\mathbf{T}_a \leftarrow 2\mathbf{T}_a + \mathbf{T}_a \times \mathbf{T}_a$ to guarantee the computational precision
- **4** Gaussian quadrature for the excitation term
- \bigcirc non-staggered **E** and **H** in time

Precise Integration

CEF 2016OverviewMethodsExamplesOutlooksNumerical stability conditionFDTD CFL criteria:
$$\Delta t_{upper}^{FDTD}_{bound} = \frac{1}{c\sqrt{\frac{1}{(\Delta x)^2} + \frac{1}{(\Delta y)^2} + \frac{1}{(\Delta z)^2}}$$

PITD

Stability conditions vary for different orders of Taylor approximation:

• $1^{st}/2^{nd}$ -order: unstable;

•
$$3^{rd}$$
-order: $\Delta t < \sqrt{3}/2$ $\ell \Delta t_{upper}^{FDTD} = \sqrt{3}/2 \frac{2^N}{2} \Delta t_{upper}^{FDTD}$
• 4^{th} -order: $\Delta t < \sqrt{2}\ell \Delta t_{upper}^{FDTD} = 2^{N+1/2} \Delta t_{upper}^{FDTD}$
• 5^{th} -order: $\frac{\sqrt{2}(15-\sqrt{65})}{4\sqrt{15-\sqrt{65}}} \ell \Delta t_{upper}^{FDTD} < \Delta t < \frac{\sqrt{2}(15+\sqrt{65})}{4\sqrt{15+\sqrt{65}}} \ell \Delta t_{upper}^{FDTD}$
bound Almost unconditionally
stable for large N.

Numerical dispersion analysis

FDTD numerical dispersion relation:

$$W_t^2/c^2 = W_x^2 + W_y^2 + W_z^2,$$

where $W_{x|y|z} = \frac{\sin(\tilde{k}_{x|y|z}\Delta x|y|z/2)}{\Delta x|y|z/2}$, $W_t = \frac{\sin(\omega\Delta t/2)}{\Delta t/2}$.
PITD

$$\tan^{2}\left(\frac{\omega\Delta t}{\ell}\right) = \frac{\left(\Lambda_{\text{PITD}} - \Lambda_{\text{PITD}}^{3}/3!\right)^{2}}{1 + \Lambda_{\text{PITD}}^{2}/2! - \Lambda_{\text{PITD}}^{4}/4!}$$

where $\Lambda_{\text{PITD}} = \frac{c\Delta t}{\ell}\sqrt{W_{x}^{2} + W_{y}^{2} + W_{z}^{2}}.$

- Hard sources
- Plane waves & TS/SF technique
- Engquist-Majda ABC
- PMLs

"它山之石,可以攻玉。"—《诗经.小雅.鹤鸣》

"Stones from other hills may serve to polish the jade of this one."

- Classic of Poetry

 Lesser Court Hymns
 - Singing of Cranes

Characteristics of the PITD method:

- ✓ preselected N determines the upper bound of Δt^{PITD}
- $\checkmark \Delta t_{upper}^{PITD} >> \Delta t_{upper}^{FDTD}$
- ✓ slight worse numerical dispersion compared with that of the FDTD method
- \checkmark numerical dispersion can be independent of Δt
- ✓ technique paths of the FDTD method can be learned

"Stones from other hills may serve to polish the jade of this one." — Classic of Poetry • Lesser Court Hymns • Singing of Cranes

Improved methods

- Fourth-order PITD [PITD(4)] method
- Wavelet Galerkin PITD (WG-PITD) method
- Leapfrog PITD (L-PITD) method
- Compact PITD (CPITD) method
- Hybrid PITD-FDTD method
- Krylov subspace method

• ...

Improved methods — $PITD(4)^{-1}$

4th-order spatial difference scheme is used as:

$$\frac{\partial u_i}{\partial x} = \frac{1}{\Delta x} \left[\frac{1}{24} \left(u_{i-3/2} - u_{i+3/2} \right) - \frac{27}{24} \left(u_{i-1/2} - u_{i+1/2} \right) \right] + O\left[(\Delta x)^4 \right]$$

¹IEEE T-AP, **59**(4), 2011: 1311-1320.

Improved methods — WG-PITD method ²

Discretization form of Maxwell equation(s) in space:

²IEEE MWCL, **20**(12), 2010: 651-653

Improved methods — Krylov space method ⁴

Recursive form of the PITD method:

$$\mathbf{X}_{n+1} = e^{\mathbf{M}\Delta t} \mathbf{X}_n + \sum_i \alpha_i e^{\mathbf{M}\beta_i \Delta t} \mathbf{f}(t_n + \gamma_i \Delta t)$$

	number of nonzero elements		Memory cost (MB)	
Μ	1558	0.0039	0.003	
$e^{\mathbf{M}\Delta t}$	370482	0.9334	0.76	

Evaluate $e^{\mathsf{M} \Delta t}$ explicitly? $\checkmark \longrightarrow$ Estimate $e^{\mathsf{M} \Delta t} \mathbf{v}$ directly. \checkmark

⁴Please refer to OC2-6 (Tue. 08:30-10:00, Function Room 3, 3F)

Improved methods — Krylov space method ⁴ (contd.)

Direct estimation of $e^{\mathsf{M}\Delta t}\mathbf{v}$

1 m^{th} -order Krylov subspace: $K^m(\mathbf{M}, \mathbf{v}) = \text{span}(\mathbf{v}, \mathbf{M}\mathbf{v}, \dots, \mathbf{M}^{m-1}\mathbf{v})$

2 Arnoldi process

• $\mathbf{V}_m = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m]^T$ – orthogonal basis of K^m

• $\mathbf{H}_m \approx \mathbf{V}_m^T \mathbf{M} \mathbf{V}_m$ – matrix generated during the Arnoldi process

$$\mathbf{\mathfrak{S}} \ e^{\mathsf{M}\Delta t} \mathbf{v} \approx \mathbf{V}_m e^{\mathsf{H}_m \Delta t} \mathbf{V}_m^T \mathbf{v} = \mathbf{V}_m e^{\mathsf{H}_m \Delta t} \mathbf{e}_1, \quad \mathbf{e}_1 = [1, 0, 0, \dots, 0]^T \in \mathbb{R}^{m \times 1}$$

	CPU time (s)	Memory cost (MB)	
Krylov-PITD	23.78	0.30	
FDTD	137.28	1.34	

⁴Please refer to OC2-6 (Tue. 08:30-10:00, Function Room 3, 3F)

Examples

Rectangular cavity

	FDTD scheme		ADI-FDTD scheme		PITD scheme	
f _{ana.} (GHz)	$\Delta t = 1$ ps		$\Delta t = 60 \; \mathrm{ps}$		$\Delta t = 60 \text{ ps}$	
	f (GHz)	rel. err.	f (GHz)	rel. err.	f (GHz)	rel. err.
3.125	2.983	4.54%	2.900	7.20%	2.983	4.54%
4.881	4.750	2.68%	4.650	4.73%	4.750	2.68%
5.340	5.450	2.06%	5.580	4.49%	5.450	2.06%
7.289	7.333	0.60%	6.817	6.92%	7.333	0.60%
7.529	7.567	0.51%	7.000	7.03%	7.567	0.51%

- relative error increases as the time-step increases for the ADI-FDTD method
- relative error is independent of the time step for the PITD method

	Δx	Δy	Δz	Δt	memory	CPU time
FDTD	0.41 mm	0.26 mm	0.42 mm	0.441 ps	24.44 MB	1024 s
L-PITD	0.41 mm	0.26 mm	0.42 mm	0.884 ps	248.4 MB	851 s

† Simulations were performed on Intel[®] Core[™] Duo CPU T8100 2.10 GHz PC.

⁵IEEE MWCL, 22(6), 2012: 294 – 296.

Comparison between the FDTD method and the Krylov-PITD method

	CPU time (s)	Memory cost (MB)
Krylov-PITD	23.78	0.30
FDTD	137.28	1.34

- almost unconditionally stable
- ✓ relative large time step size can be used
- ✓ PI technique maintains the computational precision
- ✓ relative error independent of the time-step
- ✓ hybrid PITD-FDTD technique suitable for multiscale problems
- ✓ memory cost can be relaxed by using the Kyrlov space method

"瑕不掩瑜。"—《礼记·聘义》

- "One flaw cannot obscure the splendor of the jade."
 - Book of Rites Meaning of Interchange of Missions twixt Different Courts

Future work :

- Sub-domain technique
- Parallel computing technique
- Extend to complex materials

Future prospects :

- Nanophotonics and nanoplasmonics. Ultimately, combination of quantum and classical electrodynamics
- Multiphysics

Acknowledgements & References

Acknowledgements

- Dr. Jinquan Zhao, Mr. Min Tang, Ms. Mei Yang, Dr. Xintai Zhao, Dr. Gang Sun,
- Dr. Zhongming Bai, Dr. Qi Liu and Dr. Zhen Kang are kindly acknowledged.

References

- IEEE T-MTT, 2006, 54(7): 3026
- IEEE MWCL, 2007, 17(7): 471
- PIER, 2007, 69: 201
- IEEE T-MTT, 2008, 56(12): 2859
- IEEE MWCL, 2010, 20(12): 651
- IEEE T-AP, 2011, 59(4): 1311
- IEEE T-MTT, 2012, 60(9): 2723
- IEEE MWCL, 2012, 22(6): 294

- Electron. Lett., 2013, 49(18): 1135
- COMPEL, 2013, 33(1/2): 85
- IEEE T-MTT, 2013, 61(7): 2535
- Electron. Lett., 2014, 50(18): 1297
- IEEE MWCL, 2016, 26(2): 83
- Ma, Xikui. "The precise integration time domain method." (*in Chinese*) Beijing: Science Press (2015).

Thank you! Q & A. Our **Group for Advanced Electrical Technologies (GAET)** is seeking for highly self-motivated students with the solid scientific strength in one of the following areas:

- Electromagnetics (theory and computation)
- Metamaterials and plasmonics (graphene plasmonics)
- Wireless power tansfer
- Power electronics

Please visit http://tydong.gr.xjtu.edu.cn/ for details.

